Predictive analytics

Deel dit
" Terug naar Woordenlijst Index

Predictive Analytics is a field that uses a variety of statistical techniques to analyze current and historical facts to make predictions about future outcomes. It employs data modeling, machine learning[2], Artificial Intelligence[1], deep learning, and data mining to identify patterns and relationships within data. Techniques such as regression analysis, ARIMA models, time series models, and predictive modeling are key to achieving these predictions. The applications of predictive analytics are wide-ranging, from optimizing business decisions and personalizing marketing campaigns, to predicting cash flows and legal outcomes. It’s an essential tool in industries like asset management, insurance, communications, and more. Moreover, its specialized applications include child protection, legal decisions, and sports analytics. Notable authors and works provide further insights into this field, which also intersects with topics like capital markets, econometric analysis, and counterterrorism.

Terms definitions
1. Artificial intelligence ( Artificial Intelligence )
1 Artificial Intelligence (AI) refers to the field of computer science that aims to create systems capable of performing tasks that would normally require human intelligence. These tasks include reasoning, learning, planning, perception, and language understanding. AI draws from different fields including psychology, linguistics, philosophy, and neuroscience. The field is prominent in developing machine learning models and natural language processing systems. It also plays a significant role in creating virtual assistants and affective computing systems. AI applications extend across various sectors including healthcare, industry, government, and education. Despite its benefits, AI also raises ethical and societal concerns, necessitating regulatory policies. AI continues to evolve with advanced techniques such as deep learning and generative AI, offering new possibilities in various industries.
2 Artificial Intelligence, commonly known as AI, is a field of computer science dedicated to creating intelligent machines that perform tasks typically requiring human intellect. These tasks include problem-solving, recognizing speech, understanding natural language, and making decisions. AI is categorised into two types: narrow AI, which is designed to perform a specific task, like voice recognition, and general AI, which can perform any intellectual tasks a human being can do. It's a continuously evolving technology that draws from various fields including computer science, mathematics, psychology, linguistics, and neuroscience. The core concepts of AI include reasoning, knowledge representation, planning, natural language processing, and perception. AI has wide-ranging applications across numerous sectors, from healthcare and gaming to military and creativity, and its ethical considerations and challenges are pivotal to its development and implementation.
2. machine learning. Machine learning, a term coined by Arthur Samuel in 1959, is a field of study that originated from the pursuit of artificial intelligence. It employs techniques that allow computers to improve their performance over time through experience. This learning process often mimics the human cognitive process. Machine learning applies to various areas such as natural language processing, computer vision, and speech recognition. It also finds use in practical sectors like agriculture, medicine, and business for predictive analytics. Theoretical frameworks such as the Probably Approximately Correct learning and concepts like data mining and mathematical optimization form the foundation of machine learning. Specialized techniques include supervised and unsupervised learning, reinforcement learning, and dimensionality reduction, among others.

Predictive analytics is a form of business analytics applying machine learning to generate a predictive model for certain business applications. As such, it encompasses a variety of statistical techniques from predictive modeling and machine learning that analyze current and historical facts to make predictions about future or otherwise unknown events. It represents a major subset of machine learning applications; in some contexts, it is synonymous with machine learning.

In business, predictive models exploit patterns found in historical and transactional data to identify risks and opportunities. Models capture relationships among many factors to allow assessment of risk or potential associated with a particular set of conditions, guiding decision-making for candidate transactions.

The defining functional effect of these technical approaches is that predictive analytics provides a predictive score (probability) for each individual (customer, employee, healthcare patient, product SKU, vehicle, component, machine, or other organizational unit) in order to determine, inform, or influence organizational processes that pertain across large numbers of individuals, such as in marketing, credit risk assessment, fraud detection, manufacturing, healthcare, and government operations including law enforcement.

" Terug naar Woordenlijst Index
nl_BENL
Scroll naar boven