Mot de la fin

Partager
" Retour à l'index des glossaires

“Stop words” is a term used in the realm of optimisation des moteurs de recherche[1] (SEO) and data processing. These are common function words like ‘and’, ’the’, ‘in’, which are often removed from queries to save space and time in data processing. This concept has roots in creating concordances and has been developed over time by various researchers. Notably, Hans Peter Luhn is credited with coining the phrase and C.J. Van Rijsbergen proposed the first standardized list of these words. Today, the use of stop words has evolved with the advancement of machine learning[2]. While they were initially removed for faster query processing, search engines like Google[3] now advise against worrying about stop words and encourage writing in a natural way. They are still used in specific circumstances like narrowing search results. This concept is related to other topics like concept mining, information extraction, and query expansion.

Définitions des termes
1. optimisation des moteurs de recherche. L'optimisation des moteurs de recherche, communément appelée "SEO", est une stratégie de marketing numérique essentielle. Apparue au milieu des années 90, l'optimisation des moteurs de recherche consiste à améliorer les sites web pour qu'ils soient mieux classés dans les pages de résultats des moteurs de recherche. Ce processus est essentiel pour augmenter le trafic web et convertir les visiteurs en clients. Le référencement fait appel à diverses techniques, notamment la conception des pages, l'optimisation des mots clés et la mise à jour du contenu, afin d'améliorer la visibilité d'un site web. Il implique également l'utilisation d'outils permettant de surveiller et de s'adapter aux mises à jour des moteurs de recherche. Les pratiques de référencement vont des méthodes éthiques "chapeau blanc" aux techniques désapprouvées "chapeau noir", le "chapeau gris" se situant à mi-chemin entre les deux. Bien que le référencement ne convienne pas à tous les sites web, son efficacité dans les campagnes de marketing en ligne ne doit pas être sous-estimée. Les tendances récentes du secteur, telles que l'utilisation du web mobile dépassant celle des ordinateurs de bureau, mettent en évidence l'évolution du paysage du référencement.
2. machine learning. Machine learning, a term coined by Arthur Samuel in 1959, is a field of study that originated from the pursuit of artificial intelligence. It employs techniques that allow computers to improve their performance over time through experience. This learning process often mimics the human cognitive process. Machine learning applies to various areas such as natural language processing, computer vision, and speech recognition. It also finds use in practical sectors like agriculture, medicine, and business for predictive analytics. Theoretical frameworks such as the Probably Approximately Correct learning and concepts like data mining and mathematical optimization form the foundation of machine learning. Specialized techniques include supervised and unsupervised learning, reinforcement learning, and dimensionality reduction, among others.
Mot de la fin (Wikipedia)

Stop words are the words in a stop list (ou stoplist ou negative dictionary) which are filtered out (i.e. stopped) before or after processing of natural language data (text) because they are deemed insignificant. There is no single universal list of stop words used by all natural language processing tools, nor any agreed upon rules for identifying stop words, and indeed not all tools even use such a list. Therefore, any group of words can be chosen as the stop words for a given purpose. The "general trend in [information retrieval] systems over time has been from standard use of quite large stop lists (200–300 terms) to very small stop lists (7–12 terms) to no stop list whatsoever".

" Retour à l'index des glossaires
fr_FRFR
Retour en haut